

The Good, the Bad, and the Ugly: Stratospheric Ozone, Tropospheric Ozone, and Ozone Change

Paul A. Newman

http://code916.gsfc.nasa.gov/Personnel/people/Newman,_Paul_A./

NASA/GSFC

Anne Arundel County high school Earth System Science teacher Academy June 21, 2001

Outline

- Ozone and UV radiation basic facts
- The ozone balance between production and destruction
- Ozone levels around the globe
- Ozone trends
- Summary
- If you're bored: http://www.dack.com/web/bullshit.html

Ozone Basic Facts

 O_3 = Ozone is composed of 3 oxygen atoms.

O₃ inhalation becomes a problem at concentrations greater than 80 parts per billion sustained during a continuous 8-hour period (EPA).

O₃ absorbs harmful solar ultraviolet radiation. A necessary condition for life.

 O_3 is mainly found in the stratosphere.

O₃ heats the stratosphere.

 O_3 concentrations are small (peak concentrations are about 10 parts per million at an altitude of about 32 km (20 miles).

Mass: (Billion Metric Tons)

Sun 1,9900,000,000,000,000

Earth 5,980,000,000,000

Global atmosphere 5,300,000

Global ozone 3

UV radiation

- Solar radiation exists at a variety of wavelengths, most commonly visible radiation from 400 nm (nanometers or billionths of a meter) to about 700 nm.
- UV radiation extends from 1-400 nm (invisible to the human eye).
- http://sohowww.nascom.nasa.gov/data/realtime-images.html
 Extreme UV images from the Extreme ultraviolet Imaging Telescope (EIT)
- A UV photon is more energetic than a visible photon, and the UV photon can break the bonds of biological molecules such as proteins and DNA.

Ozone screens UV radiation

Ozone absorbs the sun's harmful ultraviolet radiation

UV-c = 200-280 nm, very strongly absorbed by oxygen & ozone

UV-b = 280-320 nm, strongly absorbed by ozone

UV-a = 320-400 nm, weakly absorbed by ozone

- Eye damage: cataracts, photokerititus (snowblinding), ocular cancers
- Skin cancers: basal, squamous, melanoma
- photoaging
- Damage to various land species: cancers, altered gene activity, altered species interactions
- Damage to aquatic species: altered growth & biological processes of phytoplankton (basis of food web), altered growth of sea grasses & macroalgae., altered zooplankton
- Increased pollution levels in urban environments
- Health: http://www.ciesin.org/TG/HH/ozhlthhm.html and http://www.aad.org/Marketplace/shopping/sunprotection.html

· UV-B Monitoring Workshop

Ozone absorption of UV

Ozone Production Movie

Ozone Destruction Movie

Photochemical balance

Source Gases for Stratospheric Ozone Loss

- \triangleright NO_x Nitrous Oxide (N₂O)
- $\gt HO_x$ Methane (CH₄), Water (H₂O)
- \gt ClO_x Methyl Chloride (CH₃Cl),
- CFCs (e.g., F11: CFCl₃, F-12: CF₂Cl₂,
- F113: CF₃CCl₃, etc.)
- ightharpoonup Methyl Bromide (CH₃Br),
- Halons (CF₂BR₂, CF₂ClBr)

Chlorine life cycle

4) CI + CH₄ → HCI + CH₃
CIO + NO₂ → CIONO₂
HCI and CIONO₂ are
photolyzed, reintializing O₃ loss
in step 3.

3) CI catalytically destroys O₃
CI + O₃ → CIO + O₂
CIO + O → CI + O₂
Net: O₃ + O → 2 O₂
~ 1000 O_x lost

CFC-12

5) HCI and ClONO₂ react on the surfaces of PSCs to form Cl₂. Cl₂ photolyzed by weak sunlight. Molina–Molina catalytic reactions (mainly) produce massive spring ozone losses

6) HCI and CIONO₂ are eventually transported into the troposphere where they are rained out. Approximately 100,000 O₃ molecules are destroyed by CI in steps 3, 4, and 5.

UARS_CLAES, June_July 1992

Tropospheric release of F12 (CCl₂F₂)
is transported into the stratosphere
in the tropics (slow!).

 F12 is photolyzed by solar UV (λ < 240 nm) as it rises above the ozone peak, releasing Cl (slow)

Cl Growth in the Atmosphere

Ozone Measurements by TOMS

Dobson Units

- Imagine that we could bring all ozone above a certain location down to the ground, at 0°C and 1 atmosphere pressure.
- The thickness of this layer is about 3 millimeters (~ 0.1 inch), the thickness of two stacked pennies. This corresponds to 300 Dobson Units (approximately the global average).
- 100 Dobson Units is 1 millimeter thick (approximately the thickness of ozone in the Antarctic ozone hole), the thickness of one dime.

The Dobson Unit is a convenient unit of measurement for total column ozone.

Ozone trends

- Global trends
- Antarctic ozone hole
- Arctic ozone losses

Global Trends

Total Ozone (65°S to 65°N)

Antarctic Ozone Hole - vintage 1984

Antarctic Ozone Hole

Antarctic Ozone Hole Images

1998 Ozone Hole Movie

Antarctic ozone hole sequence of events

April-May:

•Polar vortex forms & temperatures cool

May-June:

•First appearance of polar stratospheric clouds as temperatures fall to -78°C: ternary solutions, nitric acid hydrates, ice particles.

June-July:

•Continued cooling & formation of PSCs •Surface reactions on PSCs (HCl + ClONO₂ •Dehydration and denitrification $Cl_2 + HNO_2$

August-September:

•Sun begins to rise over North Polar region •Cl₂ + light 2 ClO

•Catalytic ozone destruction by ClO

October:

- •Culmination of ozone losses
- •Conversion of ClO to ClONO₂ and HCl as temps rise above -78°C: ozone destruction stops

November:

•Vortex breakdown in late November, ozone hole mixes across Southern Hemisphere

Polar Stratospheric Cloud

Kiruna, Sweden January 27, 2000

March Arctic Ozone Trends

Summary

- Ozone is a critical gas for screening ultraviolet solar radiation
- Ozone is being destroyed by human-produced chlorine and bromine compounds that have accumulated in our atmosphere
- Large losses of ozone have been observed in the Antarctic and Arctic
- Smaller losses have been observed in the mid-latitudes
- CFCs and Halons have stopped growing in the atmosphere because of International agreements to halt production
- Ozone should show recovery within the next decade Worries about compliance Climate change impact on the stratosphere

What can you do?

- Avoid excessive solar exposure (avoid the sun between 11AM and 2PM).
- Wear and encourage others to wear sunscreen (SPF rating of 15). Even with sunscreen, prolonged exposure is not smart.
- Check your skin regularly.
- Wear sunglasses that screen UV.
- Hats and other coverings
- Make note of the UV index on the news or web:

 http://www.epa.gov/ozone/uvindex/uvover.html

 http://www.cpc.ncep.noaa.gov/products/stratosphere/uv_index/uv_current_map.html
- Read up on the topic!

Links

- <u>On-line textbook</u> http://see.gsfc.nasa.gov//edu/SEES/strat/class/S_class.htm
- EPA Home page on ozone http://www.epa.gov/docs/ozone/index.html
- Cambridge On-line ozone hole tour http://www.atm.ch.cam.ac.uk/tour/
- NOAA Climate Prediction Center stratospheric page

 http://www.cpc.ncep.noaa.gov/products/stratosphere/polar/polar.html
- Total Ozone Mapping Spectrometer http://toms.gsfc.nasa.gov/
- Robert Parson's Frequently Asked Questions on Ozone http://spot.colorado.edu/~rparson/ozone.html
- NOAA ozone web page http://www.ozonelayer.noaa.gov/